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Abstract: In this paper we use the latest corrections to the Newton-Einstein secular

rates of perihelia of some inner planets of the Solar System, phenomenologically estimated

with the EPM2004 ephemerides by the Russian astronomer E.V. Pitjeva, to put severe

constraints on the range parameter λ characterizing the Yukawa-like modifications of the

Newtonian inverse-square law of gravitation. It turns out that the range cannot exceed

about one tenth of an Astronomical Unit. We assumed neither equivalence principle violat-

ing effects nor spatial variations of α and λ. This finding may have important consequences

on all the modified theories of gravity involving Yukawa-type terms with range parameters

much larger than the Solar System size. However, caution is advised since we currently

have at our disposal only the extra-rates of periehlia estimated by Pitjeva: if and when

other groups will estimate their own corrections to the secular motion of perihelia, more

robust and firm tests may be conducted.
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1. Introduction

Historically, the first attempts to find deviations from the Newtonian inverse-square law

of gravitation were performed to explain the anomalous secular precession of Mercury’s

perihelion discovered by [18]: [14] noted that he could account for Mercury’s precession if

the law of gravity, instead of falling off as 1/r2, actually falls of as 1/rk with k = 2.00000016.

However, such an idea was not found to be very appealing, since it conflicts with basic

conservation laws, e.g., Gauss’s Law, unless one also postulates a correspondingly modified

metric for space. Other historical attempts to modify Newton’s law of gravitation to

account for the Mercury’s perihelion behavior yielded velocity-dependent additional terms:

for a review of them see [13] and references therein. Such attempts practically ceased after

the successful explanation of the perihelion rate of Mercury by [8] in terms of his general

theory of relativity: an exception is represented by [19] who, with a 1/r2 correction to the

Newtonian potential, was able to reproduce the anomalous apsidal precession of Mercury.

It was recently realized that deviations from the Newton’s inverse-square law could

provide windows into new physics [12, 9]. Indeed, in the modern framework of the chal-

lenge of unifying gravity with the other three fundamental interactions of Nature possible

new phenomena could show up as deviations from the inverse-square law of gravitation.

In general, they would occur at submillimeter length scales, but sometimes also at astro-

nomical or even cosmological distances. For a review of the many theoretical speculations

about deviations from the 1/r2 law see [1].

Among various parameterizations like, e.g., power-law [11], a very popular, phenomeno-

logical way to account for a possible violation of the Newtonian inverse-square law takes

the form of a Yukawa-like, exponentially modified Newtonian potential

U = −GM

r

[

1 + α exp
(

− r

λ

)]

, (1.1)
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where G is the Newtonian gravitational constant, M is the mass of the central body

which acts as source of the gravitational field, α and λ are the strength1 and the range,

respectively, of the putative new interaction. The Yukawa correction to the Newtonian

potential

UY = −GMα

r
exp

(

− r

λ

)

(1.2)

yields an entirely radial extra-acceleration

AY = −GMα

r2

(

1 +
r

λ

)

exp
(

− r

λ

)

. (1.3)

For a review of various theoretical frameworks (braneworld models, scalar-tensor or scalar-

tensor-vector theories of gravity, studies of topological defects) yielding a Yukawa-like,

fifth force see, e.g., [17, 4, 5, 21] and references therein. Among them, there are various

models of modified gravity which predict effects at astronomical scales or even larger. For

example, the recent Scalar-Tensor-Vector Gravity (STVG) by [21] in the intentions of his

proponent would be able to comprehensively and consistently account for the observed

data in the Solar System, the Galaxy, clusters of galaxies and cosmological scenarios [22].

Other studies on long-range, Yukawa-like modifications of gravity conducted with different

techniques on astronomical/astrophysical scales can be found in [31, 2, 26, 25, 29, 27].

The problem of finding experimental or observational constraints on the parameters

α and λ, which is crucial to exclude unviable models and achieve some progress in the

study on those that appear feasible, is usually tackled by looking at what happens at α

by keeping λ fixed, and subsequently repeating the process by sampling different spatial

ranges for λ, without asking if this or that particular range for λ is, in fact, really allowed:

see, e.g. [20, 7, 6, 10, 17, 3, 28, 15].

In this paper we will test, in a purely phenomenological way, a very definite and

widely used assumption in many modified theories of gravity, i.e. the hypothesis that λ

may assume values of the same order of magnitude, or larger than the typical sizes of the

planetary orbits in the Solar System [22]. We will show that Solar System tests are, in

fact, able to tell us something important about ranges λ ≫ 1011 m. To this aim, we will,

first, derive an explicit expression of the secular, i.e. averaged over one orbital revolution,

perihelion precession induced by a Yukawa-type anomalous acceleration on the orbits of the

Solar System planets. Then, we will compare our formula, obtained in the small eccentricity

approximation, with the latest estimated corrections of the perihelion2 rates [23] in order to

see if results consistent with the tested hypothesis are obtained. About the methodology

adopted, it is important to note that the corrections to the perihelion rates determined

in [23] are phenomenologically estimated quantities of a global, least-square solution in

which only Newtonian and Einsteinian dynamics was modeled: no exotic force terms were

included in the fit. Thus, in our opinion, such phenomenological corrections can genuinely

1Here we will not consider composition-dependent α which would induce violations of the equivalence

principle; for a derivation of the potential of eq. (1.1) in a relativistic gravity model obeying the equivalence

principle see [32].
2The perihelia, as the other Keplerian orbital elements, are not observable quantities: ranges, range-

rates, right ascensions, declinations are, in fact, measured.
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be used to get information on a hypothetic, unmodeled force. It may be interesting to

note that a somewhat independent test of the reliability of such a strategy can be found

in [16] in which the mass of the Kuiper Belt Objects was assessed with the extra-rates

of perihelia of [23] by obtaining results compatible with other estimates from different,

non-dynamical techniques. If and when other groups will estimate their own corrections to

the perihelion rates we will use such determinations as well in order to enforce and extend

our test. A complementary approach which could be followed consists in repeating the

global fit of the Solar System data by modifying the dynamical force models of the data

reduction softwares with the addition of the investigated non-standard acceleration term

and, accordingly, including in the set of the parameters to be estimated in the least-square

sense the ones connected with the Yukawa potential as well, so to look at their mutual

correlations as well:3 however, such a strategy would be model-dependent and might yield

just the outcomes desired by the experimentalist.

2. The effects of a Yukawa-like fifth force on the perihelia

To be more definite, let us suppose that a given theory, for various theoretical and/or

observational reasons, makes use of a λ quite larger than the typical spatial scales of the

Solar System, e.g. because of a fit of a data set of a physical system different from it. In this

case, an independent test of such an assumption is to check if a λ with such characteristics

yield, in fact, results compatible with the determined Solar System dynamics, within the

associated errors. Clearly, should un-physical and/or inconsistent results be obtained, the

considered model(s) and the related hypothesis would be ruled out.

Let us, now, work out the orbital effects induced by eq. (1.3), treated as a small

perturbation of the Newtonian monopole term, on the planetary motions of the Solar

System planets. In view of a direct comparison with the latest estimated extra-rates of

the longitude of perihelion ̟, we will consider the secular precession of such an element.

For a radial perturbing acceleration Ar, the Gauss equation for the variation of ̟ can be

written as
d̟

dt
= −

√
1 − e2

nae
Ar cos f, (2.1)

where a is the planet’s semimajor axis, e is the eccentricity, n =
√

GM/a3 is the Keplerian

mean motion and f is the true anomaly. In order to obtain the secular rate of ̟, eq. (1.3)

must, first, be evaluated upon the unperturbed Keplerian ellipse, given by

r = a(1 − e cos E) (2.2)

in terms of the eccentric anomaly E; then, it must be inserted into the right-hand-side of

eq. (2.1) and, finally, the integral over a complete orbital revolution must be performed.

The following formulas will be used










cos f = cos E−e
1−e cos E ,

dt = (1−e cos E)
n dE,

(2.3)

3According to some people, this would be the only trustable approach to the problem.
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In the calculation, which we are going to perform by quite reasonably assuming that α and

λ are constant and uniform over the typical spatial and temporal scales of Solar System

bodies, the expression

exp
(ae

λ
cos E

)

(2.4)

appears; it prevents us from obtaining a closed form of the averaged perihelion rate because

the modified Bessel functions of first kind I0,1(ae/λ) would appear [6]. Let us assume

λ & ae; with this choice, we can safely use

exp
(ae

λ
cos E

)

≈ 1 +
ae

λ
cos E. (2.5)

In the small eccentricity approximation we, thus, get

˙̟ ≈ α
√

GMa

2λ2
exp

(

−a

λ

)

, (2.6)

up to terms of order O(e2). Expressions analogous to eq. (2.6) can be found in [6, 30, 25],

in which quantities proportional to the perihelion advance after one orbital revolution were

worked out,4 and in [28] where the the perihelion secular rate was calculated up to O(e4).

3. Constraining the range and the strength of a Yukawa-like fifth force

with planetary perihelia

The formula of eq. (2.6) is very useful because it allows us to get important information

on the size of λ. Indeed, let us write down eq. (2.6) for a pair of planets, say A and B, and

take their ratio: by assuming that both α and λ do not vary with distance we get

˙̟ (A)

˙̟ (B)
=

√

aA

aB
exp

(

aB − aA

λ

)

. (3.1)

Note that the ratio of the rates of perihelia due to a Yuakawa-like interaction is independent

of α not only when the approximated expression of eq. (2.6) is used, but also when the

general expression with the Bessel function [6] is adopted. By defining

Π ≡ ˙̟ (A)

˙̟ (B)
, (3.2)

and

Θ(λ) ≡
√

aA

aB
exp

(

aB − aA

λ

)

(3.3)

it is possible to construct

Υ(λ) ≡ Π − Θ(λ); (3.4)

if, for a given range of values of λ & ae|A/B |Υ| turns out to be incompatible with zero,

within the errors, that range for λ must be discarded. Note that our analysis is independent

4They are 2π ˙̟ /n [6, 30] and ˙̟ /n [25].
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Planet a (AU) δa (m) ˙̟ (′′ cy−1) δ ˙̟ (′′ cy−1)

Mercury 0.38709893 0.105 -0.0036 0.0050

Earth 1.00000011 0.146 -0.0002 0.0004

Mars 1.52366231 0.657 0.0001 0.0005

Table 1: Estimated semimajor axes a, in AU (1 AU= 1.49597870691 × 1011 m) [24], and phe-

nomenologically estimated corrections to the Newtonian-Einsteinian perihelion rates, in arcseconds

per century (′′ cy−1), of Mercury, the Earth and Mars [23]. Also the associated errors are quoted:

they are in m for a [24] and in ′′ cy−1 for ˙̟ [23]. For the semimajor axes they are the formal,

statistical ones, while for the perihelia they are realistic in the sense that they were obtained from

comparison of many different solutions with different sets of parameters and observations (Pitjeva,

private communication 2005). The results presented in the text do not change if δa are re-scaled

by a factor 10 in order to get more realistic uncertainties.

of α, assumed to be nonzero, of course. The uncertainty in Υ can be conservatively assessed

as

δΥ(λ) ≤ δΠ + δΘ(λ), (3.5)

with

δΠ ≤ |Π|
[

δ ˙̟ (A)

| ˙̟ (A)| +
δ ˙̟ (B)

| ˙̟ (B)|

]

, (3.6)

δΘ(λ) ≤ Θ(λ)

(∣

∣

∣

∣

1

2aA
− 1

λ

∣

∣

∣

∣

δaA +

∣

∣

∣

∣

− 1

2aB
+

1

λ

∣

∣

∣

∣

δaB

)

. (3.7)

The linear sum of the individual errors in eq. (3.6) accounts for the existing correlations

among the estimated perihelia corrections, which reach a maximum of about 20% for Mer-

cury and the Earth (Pitjeva, private communication 2005). For A=Earth and B=Mercury,

table 1 and figure 1 tell us that λ ≈ aMer is not allowed at about 1.5 − σ level; for larger

heliocentric distances the constraints are quite tighter, exceeding the 3−σ level. Although

the inspected range for λ ends at Mars in figure 1, it turns out that larger values, far

beyond the Solar System boundaries, are ruled out as well at about 8−σ level. Our results

are unaffected by re-scaling by a factor 10 the formal errors in the semimajor axes.

After having discovered that λ cannot exceed the semimajor axis of Mercury, let us

now further constrain it. From eq. (3.1) it can be obtained

λ =
aB − aA

ln
(
√

aB

aA
Π

) . (3.8)

It turns out that the major sources of error are the estimated extra-rates of perihelia

through their ratio Π, so that

δλ ≤

∣

∣

∣

∣

∣

∣

∣

aB − aA

Π ln2
(
√

aB

aA
Π

)

∣

∣

∣

∣

∣

∣

∣

δΠ. (3.9)
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Figure 1: |Υ|/δΥ from the data of the Earth and Mercury over a range aMer < λ < aMar. Values

of λ > aMar are ruled out at an even larger number of σ.

For A=Earth, B=Mercury we have

λ = 0.182 ± 0.183 AU, (3.10)

which is marginally compatible with zero. Note that the use of eq. (2.6), from which

eq. (3.1) and eq. (3.8) come, can be a posteriori justified because for the Earth and Mercury

the obtained value for λ yields ae/λ < 1.

The result of eq. (3.10) allows us to constrain α as well. Indeed, in the case of Mars

we have
ae

λ
= 0.78, (3.11)

so that the approximation of eq. (2.5), and the formula of eq. (2.6) based on it, hold. Thus,

from eq. (3.10) and the values of table 1 for Mars we get

α =
2λ2 ˙̟√
GMa

exp
(a

λ

)

= 2 × 10−10. (3.12)

The uncertainty can be evaluated as

δα ≤ α

(

1

λ

∣

∣

∣
2 − a

λ

∣

∣

∣
δλ +

1

| ˙̟ |δ ˙̟

)

= 1.3 × 10−9. (3.13)

Also in this case, α is compatible with zero. Such constrains on α are less tight than those

obtained, e.g., in [15, 28], but the authors of such works made use of values of λ which the

present analysis has ruled out.
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4. Conclusions

In this paper we put on the test the hypothesis that modifications of the Newtonian inverse-

square law, parameterized in terms of a Yukawa-like correction, can occur over astronomical

scales by using the corrections to the Newtonian-Einsteinian secular rates of the perihelia

of Mercury and the Earth phenomenologically estimated, in the least-square sense, with

the EPM2004 ephemerides by [23].

By taking their ratio we found that the range parameter λ of a Yukawa-like fifth force

cannot exceed about 0.18 AU. The determined extra-precession of the perihelion of Mars

yielded an upper bound on α of 10−9, which is compatible with other estimates obtained

with different approaches. The values obtained for both λ and α are compatible with zero;

moreover, the results presented here are left unaffected by re-scaling the uncertainties in

the estimated Keplerian orbital elements by a factor 10 in order to evaluate them more

realistically.

If and when corrections to the secular rates of perihelia will be estimated by other

teams of astronomers, more complete and extensive tests could be performed.

Another approach which could be followed consists in introducing an ad-hoc Yukawa-

type term in the dynamical force models of the ephemerides-generating routines and re-

peating the global fit of the whole Solar System data set by estimating, among other things,

also the parameters in terms of which the new force is expressed.
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